高中数学

你高考路上的陪伴者

向量a与向量b的夹角公式_向量公式夹角_向量公式夹角cos

高中的数学公式你都掌握了吗?背下来并不等于真正掌握,会用才是最终的目标。

今天给大家分享的是能够快速解题的数学公式,希望会对你有所帮助~

小编乱入

1 . 适用条件

[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)

(1)若f(x)=-f(x+k),则T=2k;

(2)若f(x)=m/(x+k)(m不为0),则T=2k;

(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:

a.周期函数,周期必无限 ;

b.周期函数未必存在最小周期;如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题总结如下

(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;

(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4 . 函数奇偶性

(1)对于属于R上的奇函数有f(0)=0;

(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;

(3)奇偶性作用不大,一般用于选择填空。

5.数列爆强定律

(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);

(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;

(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;

(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。

6 . 数列的终极利器,特征根方程

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),

a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)。

7 . 函数详解补充

1.复合函数奇偶性:内偶则偶,内奇同外;

2.复合函数单调性:同增异减;

3.重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

8 . 常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法

前面减去一个1,后面加一个,再整体加一个2。

9 . 适用于标准方程(焦点在x轴)爆强公式

k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo

注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10 . 强烈推荐一个两直线垂直或平行的必杀技

已知直线L1:a1x+b1y+c1=0直线 L2:a2x+b2y+c2=0;

若它们垂直:(充要条件)a1a2+b1b2=0;

若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1(这个条件为了防止两直线重合)

注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

11 . 经典中的经典

相信邻项相消大家都知道。

下面看隔项相消:

Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]

注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!

12.爆强△面积公式

S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)

注:这个公式可以解决已知三角形三点坐标求面积的问题。

13 . 你知道吗?空间立体几何中:以下命题均错

(1)空间中不同三点确定一个平面;

(2)垂直同一直线的两直线平行;

(3)两组对边分别相等的四边形是平行四边形;

(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面;

(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;

(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥。

14 . 一个小知识点

所有棱长均相等的棱锥可以是三、四、五棱锥。

15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值

答案为:当n为奇数,最小值为(n²-1)/4,在x=(n+1)/2时取到;

当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。

16 . √〔(a²+b²)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)

17 . 椭圆中焦点三角形面积公式

S=b²tan(A/2)在双曲线中:S=b²/tan(A/2)

说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。

18 . 爆强定理

空间向量三公式解决所有题目:cosA=|{向量a.向量b}/[向量a的模×向量b的模]

(1)A为线线夹角;

(2)A为线面夹角(但是公式中cos换成sin);

(3)A为面面夹角注:以上角范围均为[0,派/2]。

19 . 爆强公式

1²+2²+3²+…+n²=1/6(n)(n+1)(2n+1);1²3+2²3+3²3+…+n²3=1/4(n²)(n+1)²

20 . 爆强切线方程记忆方法

写成对称形式,换一个x,换一个y;

举例说明:对于y²=2px可以写成y×y=px+px;

再把(xo,yo)带入其中一个得:y×yo=pxo+px;

21 . 爆强定理

(a+b+c)²n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上。

22 . 转化思想

切线长l=√(d²-r²)d表示圆外一点到圆心距离,r为圆半径,而d最小为圆心到直线的距离。

23 . 对于y²=2px

过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。

爆强定理的证明:对于y²=2px,设过焦点的弦倾斜角为A。

那么弦长可表示为2p/〔(sinA)²〕,所以与之垂直的弦长为2p/[(cosA)²]

所以求和再据三角知识可知。

(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)

24 . 关于一个重要绝对值不等式的介绍爆强

∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣

向量公式夹角cos_向量公式夹角_向量a与向量b的夹角公式

限时特惠:本站每日持续更新5-20节内部创业项目课程,一年会员
只需199元,全站资源免费下载点击查看详情
站长微信:
jjs406

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注